New Mountains to Climb:

New Phenomena, Materials and Technologies for the 21st Century

What are the new mountains?

101

(21st Century)

Age of Plastics

Iron Age

Bronze Age

Stone Age Bronzo Age

Information Technology

What happens after silicon?

- Electronics
- A Photonics
- "Plastic electronics"
- A Organic polymer nanodevices*
- ▲ ?

* At least one dimension of which is ≤ 100 nm.
Wavelength of visible light: ~ 400 nm to ~ 700 nm.

Cheap "Throw-Away" Plastic, Paper Electronic Circuits

"Beginning of a New Era in Electronics"

<u>See</u>:

Philips Research Laboratories (The Netherlands); G.H. Gelnik, T.C.T. Genus and D.M. de Leeuw, App. Phys. Lett., 77(10), 1489 (2000) and references therein.

Lucent Technologies, (USA); A. Dodabalapur, Z. Bao, A. Makhija, J.G. Laquindanum, V.R. Raju, Y. Feng, H.E. Katz and J. Rogers, App. Phys. Lett., 73(2), (1998) and references therein.

D. Hohnholtz and A.G. MacDiarmid, Synth. Met., 121, 1327 (2001).

Organic/Polymer Integrated Circuits

Dodabalapur *et al., Appl. Phys. Lett.* 73, (1998) 142, (and refs. therein). (Lucent Technologies, USA)

Microcontact Printing (Reel-to-reel)

- Circuits OK after 10,000 hours.
- All-organic 864 (FET) transistor circuit operating well after 5 x 10⁸ cycles.

Line Patterning of Conducting Polymers*

New Approach for Inexpensive, Disposable Electronic Devices?

*Hohnholtz and MacDiarmid, Synth. Met., 2001, 212, 1327

Line Patterning Does <u>Not</u> Involve <u>Printing</u> of (conducting) Polymers

It is based on a completely new and different concept

A Different Approach

Exploit the observation that a commercial dispersion of polythiophene derivative (PEDOT*) wets plastic transparency, but not the lines printed on the transparency by the office laser printer.

- Draw the pattern on the computer
- Print the pattern on the commercial transparency
- Apply by roller (1,2,3, as desired) coatings of PEDOT
- Dry (hot air gun) for 2-3 minutes between each coating

Line Patterning of Conducting Polymers*, Carbon Nanotubes⁷, and Metals on Plastics

New Approach for Inexpensive, Disposable Electronic Devices?

*Hohnholtz and MacDiarmid, Synth. Met., 2001, 212, 1327 Manohar et al., J. Amer. Chem. Soc., 2004, 126(14),4462

What is ''Line Patterning'' ?

'Line Patterning' of Carbon Nanotubes (CNT) and Electronic Polymers

625 pixel PDLC* Liquid Crystal Display

Make PEDOT conducting polymer pattern in usual way

* Conventional <u>Polymer Dispersed Liquid Crystal</u>

FIELD EFFECT TRANSISTORS (FETs)

- Completely inorganic (many papers)
- Hybrid : Si and Electronic Polymers (several papers ightarrowsince 1987)
- **Completely Organic (3 papers since 1994)** Garnier et al., (Science, 1994) deLeeuw, et al., (App. Phys. Lett. 2000) Friend et al., (Science, 2000)

Using non-doped (semiconducting electronic polymers)

Not an Electrochemical effect-No current flows between Gate and <u>Source/Drain</u>, i.e. <u>semiconductor</u> electrodes. Also no field effect is observed when the distance between the gate and Source/Drain electrode is too great

Plastic Transistor

- All-polymer transistor
- Prepared by standard office printer in air by Line Patterning

Field-Effect Transistor (FET)

- Both "gate" and "source/drain" electrodes are "PEDOT" films on plastic sheets (by Line Patterning).
- Insulator is optical adhesive cement.

Field Effect with Doped Polyaniline

(Emeraldine.HCI by <u>in situ</u> deposition from Aqueous Solution)

(all components are organic)

Doped Polyaniline (emeraldine. HCI)

A negative V_G <u>reverses</u> effect

Doped Polyaniline (emeraldine. HCl)

A negative V_G <u>reverses</u> effect

Polyaniline. HCI

2.1mA!! V_{SD}=18V

Note: Commercial conventional Motorola transistor (#2N5457) has: a I_{SD} ~1mA At V_g =0Vand V_{SD}=18V

Note: I_{SD} of all previous FETs using an electronic polymer are 10³ to 10⁶ smaller than this

Field Effect Mechanism...the Island Model

No field effect should occur with a metallic substance between the source/drain electrodes (σ of doped PEDOT and Polyaniline ~2S/cm)

OR.....

Possibly, the field changes the conductivity of BOTH "beaches" and "islands" ???

Polaron-bipolaron Equilibrium

Hypothesis: Application of either a positive or negative field promotes bipolaron formation

Rxn. Coordinate

Polaron-bipolaron Equilibrium

Sub-section Summary

- Line Patterning provides the potential for cheap, "throwaway" electronic circuits on plastic, paper and /or fabrics.
- A new electric field effect phenomenon is reported whereby the conductivity of a doped <u>metallic</u> polythiophene derivative and doped <u>metallic</u> polyaniline is changed many orders of magnitude by the application of a 10 – 40 volt gate potential.
- The much slower response time as compared to a conventional FET (employing semiconducting source/drain electrodes) suggests that (dopant) ion migration is involved, possibly related to polaron/bipolaron equilibrium.

FIELD EFFECT WITH "PEDOT"

(all components are organic)

Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonic acid) (PSS) (BAYTRON P, Bayer Co. Pittsburgh, PA), concentration 1.3%w (~1:2.5 PEDOT:PSS); doping level ~1/3 ethylenedioxythiophene, EDOT); molecular weight of PSS 200,000; repeat units of EDOT 5-10 repeat units.

Variable positive G and S-D voltage ~1.5V, 3V, 4.5V, 6V, 7.5V, 9V, 10.5V and 12V

Field Effect in PEDOT

 $V_{SD} = 8.7V$

FET Curves for PEDOT

Field Effect Significant With PEDOT Film Source/Drain Electrode over ~18 cm in Air or Vacuum

Air as a Dielectric

 $V_{SD} = 8.7V$

 $E = V/d = 30,000/0.065m = 4.6 \times 10^5 V/m$

PEDOT: 18cm air space (dielectric) between gate and source/drain PEDOT electrode

FET with Adjustable Gate Electrode

PEDOT: Effect of Distance

Vary only distance between gate & source/ drain electrodes. All other parameters held constant ($V_{SD} = 8.7V$; $V_G = 22.4V$

2-Second Response Time in PEDOT

PEDOT Transistor ("Doped" ("metallic") PEDOT Gate and Channel

Doped Polymer-Based Field Effect Transistors Fabricated by Line Patterning

Hidenori OKUZAKI

Department of Applied Chemistry & Biotechnology Faculty of Engineering, University of Yamanashi, JAPAN

Contents

- 1. Line Patterning
- 2. Optimization of PEDOT/PSS solution
- 3. Fabrication and characterization of FETs
- 4. Conclusion

Fabrication of FETs by Line Patterning

using

Illustrator, Adobe

LBP-470 (1200dpi), Canon

Transparency film (PET, 100µm), Coop

Baytron P (PEDOT/PSS), Bayer

Baytron P (Bayer Co. Ltd.)

Fig. Chemical structure of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) and UV-Vis-NIR spectra of PEDOT/PSS coated on PET film.

Effects of Elyleneglycol

142

Surface Morphology

Other Solvents

Field-Effect Transistor (FET)

- High V_G is necessary
- Slow response (~ sec)
- Difficult to optimize the insulator

Temperature (°C)

I-V Characteristics

148

ON / OFF ratio

FET Mobility

$$I_{D} = \frac{WC_{i}}{2L} \mu_{FET} (V_{G} - V_{T})^{2}$$

150

Optimization of FET

- 1. Substrate (flatness, smoothness etc.)
- 2. PEDOT/PSS solution (ethyleneglycol and DBS)
- 3. Insulator (material, thickness, unifirmity etc.)
- 4. Channel size (length, width, and thickness)

Conclusion

- 1. The *line patterning*, a simple, easy, and inexpensive method for making conducting patterns, is applied to fabricate all-polymer FETs.
- 2. The FET, in which the conducting channel is already built, operates both in the depletion and enhancement modes under positive and negative gate voltages, respectively.

Charge Injection Doping* (No dopant ions involved)

Under the influence of an applied (+) electric field: Saw spectroscopic signature characteristic of solitons which disappear on removal of field. (Chemically reactive species might be formed)

Change in conductivity of ~2000 S/cm from +5V to -30V

* R.H. Friend et al., Nature, 335, 137 (1988); Phys Rev. Lett. 66, 2231 (1991).
See also: C.T. Kuo et al., Synth. Metals 88, 23 (1997): Synth. Metals 88, 102 (1997).
See also: MacDiarmid, "The Polyanilines: A Novel Class of Conducting Polymers", in *Conjugated Polymers and Related Materials: The Interconnection and Electronic Structure,* Eds. W.R. Salaneck, I. Lundstrom, Oxford Scientific Press, UK., 1993, 73.

Capacitance Effects ? and/or

Faradaic (electrochemical) effects?

Forms of Carbon

diamond

C₆₀ "buckminsterfullerene"

graphite

(10,10) tube

- STRENGTH (~ 100 x STEEL, 10 x KEVLAR)
- ELECTRICAL CONDUCTIVITY
- THERMAL CONDUCTIVITY
- MOLECULAR PERFECTION
- ORGANIC CHEMISTRY on ends and sides
- HOLLOW INSIDE
- (potentially) LOW COST

Fullerene Timeline

Carbon Nanotechnologies Incorporated

Buckytube with DNA helix shown for scale

CNI Team

- Dr. Richard Smalley, 1996 Nobel Prize winner
- **Dr. Bob Gower**, former CEO of Lyondell Petrochemical
- **Drs. Ken Smith** and **Daniel Colbert**, Rice faculty members, now full-time with CNI
- Gordon Cain and Bill McMinn, Investors (and collaborators)
- 20 Employees Engineering, Research, Marketing
- Kellogg / Brown & Root, Engineering services and Pilot Plant space

CNI's Mission:

To Enable the Development of Materials and Electronics Based on *Single-Wall* Carbon Nanotubes

CNI's Strategy:

- Implement commercial-scale SWNT production
- Develop and exploit new SWNT markets

CNI's HiPco Process

- Single-step, gas-phase process for production of single-wall carbon nanotubes (SWNT)
- Common industrial feedstock (CO) readily available
- Inexpensive catalyst
- Product is predominantly pure nanotubes and catalyst residue
- Catalyst residue is easily removed when necessary, and will decrease as process is developed further

HiPco

CNI believes this is the only process that can now be commercialized to produce SWNT economically

CNI Timeline

CNI Intellectual Property

- Patents in all known methods for SWNT Production
- Compositions of matter
 - Ropes, arrays, composites, and others
- Enabling technology
 - End, sidewall, and non-covalent derivatization
- End-use applications
 - Composites, fiber, electronic, chemical process, fillers for polymers, solar energy, batteries, fuel cells, etc.

Production Development

Research at Rice University
Tubes@Rice:
Mark I NASA prototype:
Mark II (Sept. 2000):

1 g/day (purified) 5-10 g/day 20-50 g/day

- Pilot Plants (2001-2002):
- Initial Commercial Plant (2003-2004):

0.5 - 1 ton/day

^{0.1-2} lbs/day

PRIMARY MARKET AREAS

ELECTRONIC

Conductive Plastics

Electrostatic Dissipation Shielding Stealth

Energy Storage

Battery Supercapacitors Fuel cell Solar cells

Electronic Materials & Devices

Conductive inks, pastes, and adhesives Electronic mounting and packaging Device and microcircuit components Optoelectronics materials Lightning arrestors Transmission lines and wires

Field Emission

Phosphor excitation (FPD and lighting) Electron device cathodes

Miscellaneous

Actuators and transducers Lightning protection Sensors

THERMAL

Thermally conductive paints, pastes, coatings Thermally conductive fibers Thermally conductive cables, wires, and tubing

MECHANICAL

High-strength composites Films and sheets Coatings – wear-resistant and low-friction High strength fiber – pure and composite

CHEMICAL/OTHER

Filters, separators, adsorbants Catalyst supports Biomedical coatings, objects Hydrogen storage Anti-fouling, anti-corrosion, and anti-bio coatings

SWNT Pricing Per Gram

SWNT

- Made by all gas-phase HiPco process
- Diameter of 0.7-1.5 nm
- Molecularly perfect
- Stronger, tougher, stiffer
- Superior electrical conductivity
- Superior thermal conductivity
- Self-assemble into extended networks
- Developing production technology

Carbon Nano-Fibers

- Made on solid catalyst supports
- Diameter 20-200nm
- Frequent defects
- Mechanically inferior
- Lower electrical conductivity
- Lower thermal conductivity
- Do not self-assemble
- Mature production technology

CNI CONFIDENTIAL

HiPco Nanotubes

Roping of Carbon Nanotubes

SWNT Additives to Polymers

- Main research has been in producing anti-static and EMI-suppressing compounds conductivities achieved range between 0.001 and 1 Siemens/cm
- Higher SWNT loadings in some conducive composites show some increase in tensile modulus (~30%) and strain-to-failure (~100%)
- Further development of SWNT polymer nanocomposites depends on :

Understanding dispersion techniques

Focus on specific property for enhancement in composite (electrical, thermal, mechanical, etc.)

Utilization of unique aspects of SWNT (roping, derivatizability, strength, thermal and electrical conductivity, etc.)

Tubes & Polymers

- Enhances suspension
- Interacts with matrices
- Retains electrical properties
- Enables new composites
- Enables control of roping and network formation

8,8 SWNT wrapped with PVP

CNI CONFIDENTIAL

Carbon Nanotechnologies Incorporated

Buckytube with DNA helix shown for scale

Nanotechnology Uses Structures Smaller than 0.1 Micron (or about 1/500 of the diameter of a human hair)

World's smallest artificial muscle!

Carbon Nanotube (1/50,000 of diameter of yqsr hair)

THE FABRICABILITY GAP MUST BE BRIDGED – Between the micron scale of lithography and the atomic scale We developed technology to do this, thereby making photonic crystals

Self-assemble spheres

Infiltrate sphere arrays

Extract original spheres, leaving inverse replica

Infiltrate inverse replica & Extract, leaving sphere array

We have used our method to make new magnetic, superconducting, and optical materials.

All are photonic crystals, the optical analogue of semiconductors.

Exciting results are a laser that lases in 3D, switchable optical circuit elements for multiplexing, and a candidate infrared camouflage material.

Funded at UTD through Army MURI progrtan.

MULTIFUNCTIONAL CARBON NANOTUBE FIBER COMPOSITES

\$2.7 Million from DARPA to UTD as prime contractor anticipated PI: Ray Baughman

GOAL:

Demonstrate feasibility of carbon nanotube composites combining mechanical functionality with (a) mechanical actuation, (b) energy storage, (c) mechanical dampening, (d) energy harvesting, (e) sensing, and/or (f) camouflage functionalities. 183

New Actuator Material: Single-Wall Carbon Nanotubes

Modulus: 6 million kg/cm² Surface Area: 1500 m²/gm Strength: 0.3 million kg/cm² Conductivity: 5000 S/cm

Double Layer Charge Injection Is Important for Energy Storage, Energy Harvesting, Mechanical Damping, Actuation, and Other Functionalities

Ferroelectric actuators are ordinary capacitors.

Our new actuators are super capacitors: The effective separation between plates is in a nm.

WORK/CYCLE COMPARISON SHOWS WHY DARPA INVESTS IN OUR NANOTUBE ACTUATORS

Material	Y(GPa)	ε _m	$\frac{Y\epsilon_m^2}{(J/cm^3)}$	$\frac{Y {\epsilon_m^2}/2\rho}{(J/kg)}$	
Piezoceramic	64	0.1 %	0.32	4.25	
Magnetostrictor	100	0.2 %	0.2	21.6	
PZN-PT Single Crystal	7.7	1.7 %	1.0	131	29x by volume
Polyurethane Elastomer	0.02	4 %	0.016	13	
P(VDF-TrFE) Electrostrictor	0.38	4 %	0.3	160	150x by weight
Non-bundled SWNT (theory)	640	1% (1 V)	29	24000.	186

OUR NANOTUBE ACTUATORS ALREADY GENERATE 100 TIMES THE FORCE OF NATURAL MUSCLE

LARGE ACTUATORS

POTENTIAL

- Gravimetric work capabilities ten times ferroelectrics.
- Stress generation capabilities ten times ferroelectrics.
- Cycle life should be large.
- Large stroke (above 1%).
- Ten times lower needed voltage than ferroelectrics.
- Operation to above 1000° C.

SOME POSSIBILITIES

• Actuation for hostile environments (temperature or radiation): aircraft engines, down hole, planetary exploration

•Man-like robotics (prosthetics, body assists, artificial heart)

MICROACTUATORS: OPTICAL FIBER SWITCH

Nanotube 2-D Switch

Present 1-D Switch

WORLD'S SMALLEST ARTIFICIAL MUSCLE: Carbon nanotube 1/50,000 the diameter of a human hair

Fiber Supercapacitors For the Energy Sufficient Soldier and Micro-Air Vehicles

Chemical Actuation: The Basis For Autonomous Sensor/Actuator

Concept: Non-electrical actuator material senses gas concentration and provides appropriate actuator response.

Examples of possible applications:

- Chemical/biological protection clothing comprising arrays of cantilever microvalves.
- Self-regulating microfluidic valves for engines.

Data on Chemical Actuation

Thermal Energy Harvesting Using Carbon Nanotube Composite As A Structural Wall

NASA VIEWPOINT

Potential Benefit of Nanotube Composites for the BLENDED WING BODY, ADVANCED LONG-RANGE TRANSPORT CONCEPT

Simple application of Carbon Nanotube materials cuts the empty weight of the vehicle by 45% and design fuel required by 25%

OUR TEAMS SPINNING PROCESS PROVIDES THE STRONGEST KNOWN CONTINUOUS NANOTUBE FIBERS

Technologies of the NanoTech Institute will Lead to Products

Technology Need	Economic Drivers	Specific Requirements
Sensors (navigation, gas, magnetic	Aerospace, industrial, and home products	Decreased size, increased sensitivity and selectivity,
field, pressure, bio, position,		and decreased cost
chemical, neural network)		
Thermoelectrics and thermoionics	Power systems and cooling for aerospace and	ZT > 1 over wide temperature range
with increased efficiencies	home	
Low-voltage, high-stroke actuators	Aerospace and industrial control	High cycle life, energy efficiency, rate, force generation,
with high power capacity	Robotics	and (for engines) high temperature stability
Improved electroluminescent	Cockpit and computer displays	Improved carrier injection providing increased
displays		efficiencies, brightness, and life
Fast, ultra-high density electronic	High speed computing	Ultra-high speeds, ultrahigh device densities, and low
circuitry		power
Intelligent and multifunctional	Advanced DOD and aerospace integrated	High strength nanotube/polyelectrolyte composites with
materials	systems (weight and cost savings from	combined structural, actuation and energy processing
	multifunctionality)	functions
Microfluidic circuitry	Hydraulic control systems for aerospace,	Microfluidic actuation and sensing
	biotechnology, and industrial applications	Electrowetting driven pumps
Energy harvesting devices (thermal,	Advanced DOD systems	Nanotube/polyelectrolyte microstructures with combined
photo, and mechanical)	Waste energy harvesting for aircraft and in the	structural and energy harvesting functions
	home	
Micro machines	Advanced controls, sensors, and laboratory	Micromechanical switches for optical fibers
	on a chip	
Optical circuitry elements	Sensing, high speed computing, and VCSELs	Photonic-crystal based optical device and interconnect
		structures
Smaller energy storage devices	Aerospace, industrial, and commercial power	Low cost, high-cycle-life supercapacitor with
with higher capacity and faster	systems	C > 300 F/gm and charge time less than 0.1 sec
charge and discharge	Energy storage on circuit boards	
Gas storage systems	Aerospace, industrial, and commercial power	Low cost H_2 storage medium with capacity > 8 wt %
	systems	
Improved catalysts	Chemical processing technologies	Low cost, high selectivity catalysts
Improved fuel cells (solid oxide and	Aerospace, industrial, and home power	Low cost modular SOFC with > 1kW/kg
PEM)	systems.	Decreased catalyst and cell resistance, long life
Powders for low-cost fabrication of	Low cost structural parts for aerospace and	Improved mechanical properties and decreased cost for
strong parts	other applications	fabricated parts 196

A Strange Mechanical Property of Chiral Nanotubes: They Rotate When Stretched.

(10, 5) Chiral Nanotube

* Rotation can exceed 900°/micron (10% tensile strain for (4,2) nanotube).

* Rotation for an applied tensile strain goes as (tube diameter)⁻¹.

* Direction of rotation is counter-intuitive.

* Energy driving rotation is small relative to total strain energy:

	Tube Type		
Strain (%)	(4, 2)	(6, 3)	(10, 5)
5	0.20%	0.06%	0.05%
10	0.56%	0.16%	0.13%

Santa Claus Illustrates This Effect!

Charge Injection Doping*

(No dopant ions involved)

* J.H. Burroughs, R.H. Friend, P.C. Allen, J. Phys. D.: Appl. Phys. 22, 956 (1989); K.E. Ziemelis, et al., Phys. Rev. Lett. 66, 2231 (1991). See also: C.T. Kuo et al., Synth. Metals 88, 23 (1997): Synth. Metals 88, 102 (1997).

Single Tube

- Anions on surface
- Remove D.C. source?
- Capacitance effect

Single-Walled Carbon Nanotube (SWNT) Bundles*

- Anions also inside a bundle
- Remove D.C. source: charge on tubes in bundle remains, e.g. (CH)_x
- Faradaic effect

Is there a real difference? (semantics?)

*Reproduced from E. Munoz, Ph.D. Thesis, Instituto de Carboquimica (CSiC), Saragoza, Spain, 2000.

Single-walled Carbon Nanotube Bundles

What is ''Line Patterning'' ?

FET Device Constructed Entirely from SWNT Bundles

(channel is highly conducting, $\sigma \sim 54$ S/cm)

- * Appx. 225nm thick film of laser-oven produced SWNT bundles (~25nm diameter; semiconducting and metallic).
- **Appx. 400nm thick film of polyvinylphenol (spun cast).
- ***Plastic substrate, polyethylene terephthalate ("overhead transparency").

Single-walled Carbon Nanotube Bundles Field-Effect Device (top view)

Single-walled Carbon Nanotube Bundles Field-Effect Device (top view)

Field-Effect Device made from Single-walled Carbon Nanotube Bundle (channel & gate) (Produced by Line Patterning* on Plastic Substrate (PET)

<u>Step-1:</u> Line-Pattern thin film of SWNT (~225nm) on PET substrate (overhead transparency)

<u>Step-2:</u> Spin coat PVP ~400nm) from 10wt% solution in isopropanol

<u>Step-3:</u> Spin coat SWNT from an aq. dispersion in surfactant

- Source and Drain: SWNT bundles
- Insulating PET (substrate)
- = PVP dielectric
- Gate: SWNT bundles

*MacDiarmid and Hohnholtz, 2001.

Characteristics of a Transistor Utilizing a SWNT Gate and Channel (on PET)

Results consistent with p-type carriers*

^{*}Martel et al., Appl. Phys. Lett. 73, 2447 (1998).

Characteristics of a Transistor Utilizing a SWNT Gate and Channel (on PET)

Results consistent with p-type carriers*

^{*}Martel et al., Appl. Phys. Lett. 73, 2447 (1998).
Migration of Ions in an Applied Electric Field

M⁺ A⁻ dissolved in polar solvents

Transparent Conductors

Eikos, Inc.

- Product Development Specialists
 - Nanocomposites
 - High Temperature Polymers
- Founded in 1996 (private company)
- Located in Franklin, MA
- 14,000 ft² Facility
- 10 Employees

Management

- Joe Piche, CEO & Founder
 - BS, Polymer Chemistry
 - 20+ yrs exp. in Specialty Materials
- Dave Arthur, COO
 - BS, MS Chem. Eng., MBA
 - 20+ yrs exp. commercializing technology
- Paul Glatkowski, VP Engineering
 - BS, Chem. Eng.
 - 15+ yrs exp. in Specialty Materials
- Dr. Philip Wallis, Technical Director
 - PhD, Surface Chemistry
 - 20+ yrs exp. with Ink formulations & Ink Jet printing

Three Business Units

Markets

- Solar Panels
- Interactive Electronic Textiles

Products

- Inks
- Films

Circuits	Product Formats					
Market Segments	Inks	Films	Circuits			
Military Transparencies	0	0				
Touch Screens		0	0			
EL Lamps		0	0			
Flat Panel Displays	0	0	0			
Window Films		0	0			
Plastic ICs	0	0				
Solar Panels		0	0			
Interactive Electronic Textiles	0					

Business Model

- Produce ink in Franklin, MA.
- Use certified coaters to produce film.
 - Sell film through alliance partners.
 - Offer limited exclusivity based on product format, market segment & geographic territory.
- License digital printing technology to large circuit component manufacturers.
 - Sell ink to licensees and collect royalties.

Sales Forecast (Films)

• Assumptions:

- 17% market
 penetration by 2006
 (conservative)
- \$2 / ft² ASP for coated film
- Does <u>not</u> include royalty revenues or ink sales.
- Does <u>not</u> include film sales to other market segments.

Technology Share

Market Need (vs. ITO)

- Lower Cost
 - Low Capital Costs
 - Coating < \$1 per ft²
- More Flexible
- Less Color (not yellow)
- Digital Printing capability

The Approach

- Transparent Conductive Ink
 - Carbon Nanotube (CNT) "Pigment"
 - Polymer "Binder"
 - Solvent Based
- Tailored Formulations
 - Transparency / Resistivity CNT
 - Mechanical Properties Binder

Ease of processing advantage!

CNT coatings...

...can be applied to continuous webs, using **conventional** methods such as spraying, dipping, knife coating, etc.

Circuits can also be **directly printed** * using screen or ink jet printing!

* Patents Pending

Carbon Nanotubes

- High conductivity
 - 3 x 10⁻⁵ ohm-cm (SWNT ropes)
- Small size & High aspect ratio
 - 1 nm diameter
 - -L/D > 1,000
- High stability
 - UV, Temperature, Humidity, Solvents
- Self Assembly characteristics

Single-Wall Nanotubes (SWNT)

D ~1 nm, L/D > 1,000

Nanoshield[™] Ink

ITO Killer!

Transparent Conductors 233 ohms/sq @ 90% transparency!

EIKOS CONFIDENTIAL

Competitive Approaches

	CNT dispersions	Sputtered ITO	Spray Pyrolysis	ITO dispersions	ICP dispersions
Transparency	0	0	0	۲	0
Conductivity	۲	0	0		۲
Cost	0	•	0	0	۲
Compatible with plastic substrates	0	0		0	0
Ease of patterning circuits	0	•		۲	0
Flexibility / ductility	0	•			0
Environmental stability	0	۲	۲	۲	۲
Compatible with 3D substrates	0	•		0	0

Poor

Superior cost / performance

Intellectual Property

• Issued Patents:

- Electromagnetic Shielding Composite Comprising Nanotubes.
 - US Patent 6,265,466 issued July 2001

• Other Patents Pending (US & PCT applications filed):

- Transparent Coatings Comprising Carbon Nanotubes and Methods for Forming the Same.
- Nanocomposite Dielectrics.
- EMI and Lightning Protection Using Carbon Nanotubes.
- Polymer Nanocomposites and Methods for the Preparation Thereof.
- Conformal Coatings Comprising Carbon Nanotubes.
- "Key" US Provisionals Filed:
 - ✓ Patterning Circuits from Carbon Nanotube Dispersions.
 - ✓ Highly Optical Transparent Nanostructured Electrical Conductors.
 - Mixtures of Carbon Nanotubes and Other Conductive Fillers.

Market Research shows High Interest!

- 3M MicroTouch
- Army Research Labs
- Cambridge Display Tech.
- Dupont Polar Vision Inc
- Durel Corporation
- E Ink
- Elo Touch Systems
- Gyricon
- Dr. Leuder
- Dr. Gregory Crawford
- Dr. Robert Pinnell
- Kent Displays
- Kodak Displays

- LG Philips
- NEC
- Optrex
- Plastic Logic
- Sharp
- Sony
- Tekra
- Toppan
- Toshiba
- Touch International
- Universal Display Corp.
- Vitex
- Viztec

Touch Screens / EL lamps

Flat Panel Displays

Samsung announces world's first 40-inch TFT-LCD TV.

critical component in FPDs.

Flexible displays!

- OLEDs
- Electronic paper (E-Ink)

Even after folding and creasing, the resistance of above Nanoshield[™] transparent circuit increased less than 5%.

When ITO circuit was folded, the result was an open circuit.

Nanoshield[™] Transparent Conductors

☑ Differentiated Technology Image: Technology has been Validated **IP** protected with Patent Filings ✓Large Growth Markets ☑Clear Market Entry Strategy ✓Strong Customer Interest ✓Solid Team