Metal-Semiconductor Interfaces

- Metal-Semiconductor contact
- Schottky Barrier/Diode
- Ohmic Contacts
- MESFET

Device Building Blocks

Energy band diagram of an isolated metal adjacent to an isolated n-type semiconductor

Energy band diagram of a metal-semiconductor contact in thermal equilibrium.

Energy band diagrams of metal n-type and p-type semiconductors under thermal equilibrium

n – Type semiconductor

Energy band diagrams of metal n-type and p-type semiconductors under forward bias

Energy band diagrams of metal n-type and p-type semiconductors under reverse bias.

Charge distribution

Depletion Layer

$$\rho = -qN_D \qquad 0 < x < W$$
$$\nabla^2 V = \frac{\rho}{\varepsilon_s} = -\frac{qN_D}{\varepsilon_s}$$
$$\nabla E = \frac{dE}{dx} = -\frac{qN_D}{\varepsilon_s}$$
$$E(x) = \frac{qN_D}{\varepsilon_s}(W - x)$$

$$V_{bi} - V = \int_{0}^{W} E(x) dx = \frac{q N_D}{\varepsilon_s} \int_{0}^{W} (W - x) dx$$
$$= \frac{q N_D}{\varepsilon_s} \int_{W}^{0} (W - x) d(W - x) = \frac{q N_D W^2}{2\varepsilon_s}$$

Depletion width

$$W = \sqrt{2\varepsilon_s (V_{bi} - V) / q N_D}$$

Charge per unit area

$$Q = QN_DW = \sqrt{2q\epsilon_s N_D(V_{bi} - V)}$$

Capacitance

Per unit area:
$$C = \frac{\partial Q}{\partial V} = \sqrt{\frac{q\varepsilon_s N_D}{2(V_{bi} - V)}} = \frac{\varepsilon_s}{W}$$

Rearranging:

$$\frac{1}{C^2} = \frac{2(V_{bi} - V)}{q\varepsilon_s N_D}$$

Or:

$$N_{D} = \frac{2}{q \varepsilon_{s}} \left[\frac{-1}{d \left(\frac{1}{C^{2}} \right) / dV} \right]$$

ss Lowell 10.523 - Sanjeev Manohar

1/C² vs V

•If straight line - constant doping profile -

slope = doping concentration

•If not straight line, can be used to find profile

•Intercept = V_{bi} can be used to find ϕ_{Bn}

$$\phi_{Bn} = V_n + V_{bi}$$

$$V_n = \frac{kT}{q} \ln\!\left(\frac{N_D}{n_i}\right)$$

Current transport by the thermionic emission process

Thermionic emission

Number of electrons with enough thermal energy to overcome barrier:

$$n_{th} = N_{C} e^{\left(\frac{-q\phi_{Bn}}{kT}\right)}$$

At thermal equilibrium, current going both ways is the same:

$$|j_{m\to s}| = |j_{s\to m}| = C_1 N_C e^{\left(\frac{-q\phi_{Bn}}{kT}\right)}$$

UMass Lowell 10.523 - Sanjeev Manohar

Forward Bias

Barrier for electrons in semiconductor is reduced by V_F

$$n_{th} = N_{C} e^{\left(\frac{-(q\phi_{Bn} - V_{F})}{kT}\right)}$$

Barrier for electrons from metal to semiconductor is the same

Net current:

Forward Bias

$$j = j_{s} \left(e^{\frac{qV}{kT}} - 1 \right)$$

$$\dot{J}_{s} = A * T^{2} e^{\frac{-q\phi_{Bn}}{kT}}$$

Effective Richardson Constant
$$A^* = \frac{4\pi q m_e^* k^2}{h^3}$$

Derive by determining current with integral of velocity and density of states

$$j = \int v(E) dN(E) = \int v(E)g(E)f(E)dE$$

Forward current density vs applied voltage of W-Si and W-GaAs diodes

 $V_F(V)$

Thermionic Emission over the barrier – low doping

Tunneling through the barrier – high doping

Tunneling through the barrier

Narrow depletion width for high doping - tunneling

From QM 101:

Wavefunction is exponential depending on barrier width and height probability of making it to the other side ~ ψ^2

$$\Psi(\mathbf{x}, t) = \mathbf{e}^{-i\omega t} \mathbf{e}^{-\alpha \mathbf{x}} \qquad \alpha = \sqrt{\frac{2m(U-E)}{\hbar^2}}$$
$$I \sim \exp\left[-2W\sqrt{2m(q\phi_{Bn} - qV)/\hbar^2}\right]$$
$$W = \sqrt{2\varepsilon_s(V_{bi} - V)/qN_D}$$
$$I \sim \exp\left[\frac{-C_2(\phi_{Bn} - V)}{\sqrt{N_D}}\right] \qquad C_2 = 4\sqrt{m\varepsilon_s}/\hbar$$

Contact resistance

Specific Contact Resistance(based on current density)

$$R_{\rm C} \equiv \left(\frac{\partial J}{\partial V}\right)\Big|_{V=0}^{-1}$$

For tunneling current through barrier (high doping):

$$I \sim \exp\left[\frac{-C_2(\phi_{Bn}-V)}{\sqrt{N_D}}\right]$$

Ohmic Contact:

$$R_{C} \sim \exp\left(\frac{C_{2}\phi_{Bn}}{\sqrt{N_{D}}\hbar}\right)$$

Calculated and measured values of specific contact resistance

 $N_{D} (cm^{-3})$

MESFET

No gate voltage – depletion from built-in voltage
Positive drain voltage causes reverse bias
Increased depletion width with increased V

$$R = \rho \frac{L}{A} = \frac{L}{q\mu_n N_D Z(a - W)}$$

At higher drain voltages, $W=a - pinch off at V_{Dsat}$

$$V_{bi} - V = \frac{qN_DW^2}{2\varepsilon_s} \implies V_{Dsat} = \frac{qN_Da^2}{2\varepsilon_s} - V_{bi}$$

Above pinchoff voltage, drain current does not increase Voltage at pinch-off point is still $V_{\rm dsat}$

Addition of gate voltage (negative) increases baseline depletion width Pinch-off occurs sooner

Saturation voltage and current are reduced (narrower channel)

$$V_{Dsat} = \frac{qN_Da^2}{2\varepsilon_s} - V_{bi} - V_G$$

I-V Characteristics – Linear Region

$$I_{D}dy = q\mu_{n}N_{D}Z[a - W(y)]dV$$
$$= q\mu_{n}N_{D}Z[a - W]\frac{qN_{D}}{\varepsilon_{s}}WdW$$

$$I_D = \frac{q^2 \mu_n N_D^2}{L \varepsilon_s} \int_{W_1}^{W_2} (a - W) W dW$$

$$I_{D} = \frac{q^{2} \mu_{n} N_{D}^{2}}{2L \varepsilon_{s}} \left[a \left(W_{2}^{2} - W_{1}^{2} \right) - \frac{2}{3} \left(W_{2}^{3} - W_{1}^{3} \right) \right]$$

I-V Characteristics – Linear Region

$$W_{1} = \sqrt{\frac{2\varepsilon_{s}(V_{G} + V_{bi})}{qN_{D}}}$$
$$W_{2} = \sqrt{\frac{2\varepsilon_{s}(V_{D} + V_{G} + V_{bi})}{qN_{D}}}$$

$$I_{D} = I_{P} \left[\frac{V_{D}}{V_{P}} - \frac{2}{3} \left(\frac{V_{D} + V_{G} + V_{bi}}{V_{P}} \right)^{3/2} + \frac{2}{3} \left(\frac{V_{G} + V_{bi}}{V_{P}} \right)^{3/2} \right]$$
$$I_{P} = \frac{Z \mu_{n} q^{2} N_{D}^{2} a^{3}}{2\varepsilon_{s} L}$$

$$V_{P} \equiv \frac{q N_{D} a^{2}}{2 \varepsilon_{s}}$$

Normalized ideal current-voltage characteristics of a MESFET with $V_{P} = 3.2 V$.

Transconductance

$$I_{D} = I_{P} \left[\frac{V_{D}}{V_{P}} - \frac{2}{3} \left(\frac{V_{D} + V_{G} + V_{bi}}{V_{P}} \right)^{3/2} + \frac{2}{3} \left(\frac{V_{G} + V_{bi}}{V_{P}} \right)^{3/2} \right]$$

In Saturation: $V_P = V_D + V_G + V_{bi} \implies V_{Dsat} = V_P - V_G - V_{bi}$

$$I_{Dsat} = I_{P} \left[\frac{V_{P} - V_{G} - V_{bi}}{V_{P}} - \frac{2}{3} \left(\frac{V_{P} - V_{G} - V_{bi} + V_{G} + V_{bi}}{V_{P}} \right)^{3/2} + \frac{2}{3} \left(\frac{V_{G} + V_{bi}}{V_{P}} \right)^{3/2} \right]$$
$$I_{Dsat} = I_{P} \left[1 - \frac{(V_{G} + V_{bi})}{V_{P}} - \frac{2}{3} + \frac{2}{3} \left(\frac{V_{G} + V_{bi}}{V_{P}} \right)^{3/2} \right]$$
$$I_{Dsat} = I_{P} \left[\frac{1}{3} - \frac{(V_{G} + V_{bi})}{V_{P}} + \frac{2}{3} \left(\frac{V_{G} + V_{bi}}{V_{P}} \right)^{3/2} \right]$$

Transconductance

$$I_{Dsat} = I_{P} \left[\frac{1}{3} - \frac{(V_{G} + V_{bi})}{V_{P}} + \frac{2}{3} \left(\frac{V_{G} + V_{bi}}{V_{P}} \right)^{3/2} \right]$$

$$g_{m} = \frac{\partial I_{D}}{\partial V_{G}} \Big|_{V_{D}}$$

$$g_{m} = I_{P} \left[0 - \frac{1}{V_{P}} + \frac{2}{3} * \frac{3}{2} (V_{P})^{-3/2} (V_{G} + V_{bi})^{1/2} \right]$$

$$g_{m} = \frac{I_{P}}{V_{P}} \left(1 - \sqrt{\frac{V_{G} + V_{bi}}{V_{P}}} \right)$$

$$g_{m} = \frac{2Z\mu_{n}qN_{D}a}{L} \left(1 - \sqrt{\frac{V_{G} + V_{bi}}{V_{P}}} \right)$$

Equivalent Circuit - High Frequency AC

- Input stage looks like capacitances gate-to-channel
- Output capacitances ignored -drain-to-source capacitance small

Maximum Frequency (not in saturation)

 C_i is capacitance per unit area and C_{gate} is total capacitance of the gate

$$C_{gate} = C_i Z L$$

• $F=f_{max}$ when gain=1 ($i_{out}/i_{in}=1$)

$$f_{max} = \frac{g_m}{2\pi C_{gate}}$$

$$C_{gate} = ZL\left(\frac{\varepsilon_s}{\overline{W}}\right)$$

$$f_{max} \approx \frac{\frac{2Z\mu_n qN_D a}{L}}{2\pi ZL\left(\frac{\varepsilon_s}{\overline{W}}\right)} = \frac{\mu_n qN_D a^2}{2\pi L^2 \varepsilon_s}$$

Velocity Saturation

Drain current:

$$I_D = A^* qn \upsilon_s = Z(a - W)qN_D \upsilon_s$$

Transconductance

$$\boldsymbol{g}_{m} = \frac{\partial \boldsymbol{I}_{D}}{\partial \boldsymbol{V}_{G}} = \frac{\partial \boldsymbol{I}_{D}}{\partial \boldsymbol{W}} \frac{\partial \boldsymbol{W}}{\partial \boldsymbol{V}_{G}} = \frac{\boldsymbol{Z}\boldsymbol{\upsilon}_{s}\boldsymbol{\varepsilon}_{s}}{\boldsymbol{W}}$$

Cutoff Frequency:
$$f_{max} = \frac{g_m}{2\pi C_{gate}}$$

$$f_{\max} = \frac{Z \upsilon_s \varepsilon_s / W}{2\pi Z L (\varepsilon_s / W)} = \frac{\varepsilon_s}{2\pi L}$$

Figure 7.15. The drift velocity versus the electric field for electrons in various semiconductor materials.

III-V MESFETs – GaAs and InP

+Semi-insulating material – high speed devices (like built-in SOI)

+High Electron Mobility/Saturation Velocity – high speed

+Direct Bandgap – photonic devices

+Heterostructures – bandgap engineering

-No Simple Oxides – MOSFETS not viable – no equivalent to SiO₂

III-V Transistors: GaAs

No simple oxides for GOX – MOSFETS not widely used

MESFET structure more common – mesa structure depletion mode transistor

Semi-insulating Substrate

Depletion Mode GaAs MESFET

- •N-type material high electron mobility
- •Mesa etch for isolation on SI substrate
- •Ohmic contacts for Source and Drain alloyed
- •Shottky contact for Gate Ti
- •Recessed gate depth determines threshold

GaAs MESFET Fabrication

Deposit Si_3N_4 layer, implant Si and anneal for form n-type material Can also grow n-type epi layer by MBE or MOCVD

Ohmic contact formation for source and drain – NiAuGe

evaporate Au(88wt%)Ge(12wt%) then Ni (+Au) anneal 30 min at 450°C in H_2/N_2 Au reacts with Ga from substrate – Ga vacancies Ge fills Ga vacancies – heavy n-type doping low contact resistance ohmic Ge doping not uniform – spreading resistance effect

Gate Recess Etch

Wet etching Channel depth determines pinch-off voltage Channel resistance can be monitored *in-situ*

Mesa Recess Etch

Wet etching Semi-insulating substrate for device isolation

Shottky Gate Electrode deposition – Ti/Pt/Au or Ti/Pd/Au

Almost any metal will form barrier Ga diffuses in many metals Ti –contact Pt or Pd barrier layer Au added for low resistivity

GaAs Digital Circuits:

Direct Coupled FET Logic (DCFL) – lowest power and highest level of integration

Uses enhancement and depletion mode transistors

Enhancement mode transistors made using thinner gate recess or different doping to change threshold

DCFL Fabrication Sequence

DCFL Fabrication Sequence(cont.)

