

MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) are fourterminal voltage-controlled switches.

Current flows between the diffusion terminals if the voltage on the gate terminal is large enough to create a conducting "channel", otherwise the diffusion terminals are not connected.

"Linear" Operating Region

$$V_{GS} \ge V_{TH}$$

 $V_{GS} - V_{TH} > V_{DS}$

Current flows from drain to source

Larger V_{DS} increases I_{DS}

Larger V_{GS} creates deeper channel which increases I_{DS}

Saturated Operating Region

Voltage difference across the channel remains $V_{GS} - V_{TH}$ even with increased V_{DS}

To the first order, once $V_{DS} \ge V_{GS} - V_{TH}$, I_{DS} does not increase

Channel Length Modulation Effectf = S $f = V_{GS}$ $V_{GS} \ge V_{TH}$ $V_{GS} \ge V_{TH}$ $V_{DS} \ge V_{GS} - V_{TH}$

Increased V_{DS} results in effective channel length decreasing, i.e., δL getting larger, which increases I_{DS}

FETs come in two flavors

By embedding p-type source and drain in a n-type substrate, we can fabricate a complement to the N-FET:

The use of both NFETs and PFETs – complementary transistor types – is a key to CMOS (complementary MOS) logic families.

1. Introduction

- First proposal for a MOSFET device was given by *Lilienfeld* and *Heil* in 1930.
- First operational device was made in 1947 at Bell Labs.
- Since then, the MOSFET dimensions have been continuously scaled to achieve more functions on a chip.

From SIA roadmap for semiconductors (1997)

• MOSFET is a four-terminal device. Basic device configuration is illustrated on the figures below.

Side-view of the device

Top-view of the device

Basic device parameters:

channel length Lchannel width W oxide thickness d_{ox} junction depth r_j substrate doping N

(b) *n*-cnannel, depletion mode device

(c) *p*-cnannel, enhancement mode device

(b) *p*-cnannel, depletion mode device

• The role of the Gate electrode for *n*-channel MOSFET:

Positive gate voltage does two things:

- (1) Reduces the potential energy barrier seen by the electrons from the source and the drain regions.
- (2) Inverts the surface, and increases the conductivity of the channel.

• Qualitative description of MOSFET operation:

(a) $V_G > V_T, V_D > 0$ (small)

Variation of electron density along the channel is small: $I_D \propto V_D$

(b)
$$V_G > V_T$$
, $V_D > 0$ (larger)

Increase in the drain current reduces due to the reduced conductivity of the channel at the drain end.

(c)
$$V_G > V_T$$
, $V_D = V_G - V_T$

Pinch-off point. Electron density at the drain-end of the channel is identically zero.

(d)
$$V_G > V_T$$
, $V_D > V_G - V_T$

Post pinch-off characteristic. The excess drain voltage is dropped across the highly resistive pinch-off region denoted by ΔL .

• *IV*-characteristics (long-channel devices):

$V_G = 0.8 \text{ V}, V_D = 0.56 \text{ V}, V_T = 0.33 \text{ V}$

 $V_G = 0.8 \text{ V}, V_D = 1.56 \text{ V}, V_T = 0.33 \text{ V}$ **3D** View Contour plot 0.1 E_c [eV] 0.08 Conduction band 0.06 source 0.05 CO LUM 0.04 0.02 -2 -Ó 0.05 0.15⁰ 0.1 0 Distance [µm] 0 0.05 0.1 0.15 Distance [µm]

